

MAINTENANCE AWARE DESIGN

INTRODUCTION TO MADe SOFTWARE

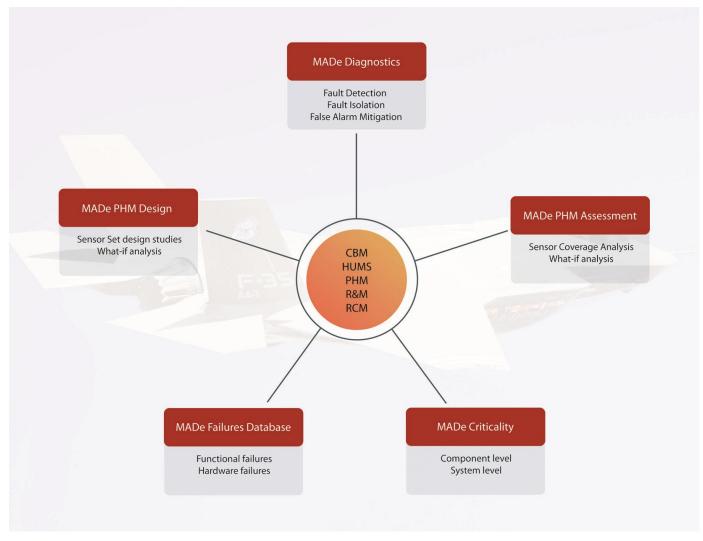
HUMS – Avalon 2009

Background

- PHM Technology is an Australian company focused on advanced engineering applications.
- The 'Maintenance Aware Design environment' ('MADe') is a software tool that meets the practical engineering requirements for reliability & PHM system design, assessment and management.
- Only private company to secure a JSF Science and Technology Board R&D grant [to develop the 'Aerospace PHM Software Tool based on MADe]

What is MADe?

- The Maintenance Aware Design environment ('MADe') is a software tool that meets the practical engineering requirements for reliability / HUMS / PHM system design and management, including:
 - detailed failures databases for systems based on standardized taxonomies with user configurable outputs
 - dependency modeling: effects of failures are accurately propagated through complex hierarchical systems
 - trade study analysis and assessment of system coverage of sensor set design based on FMECA
 - advanced diagnostic capability, including Fault Detection & Isolation / False Alarm mitigation



MADe Features

- MADe provides:
 - generic and proprietary libraries (re-usable parts and extensible component / system elements)
 - design of HUMS / PHM systems based on FMECA (what-if analysis conducted in real-time based on user defined parameters, eg. cost, weight, reliability, etc.)
 - performance assessment of legacy HM systems (failure mode coverage based on existing sensor sets)
 - design version controls (multiple concurrent system versions to meet internal / customer specific requirements)

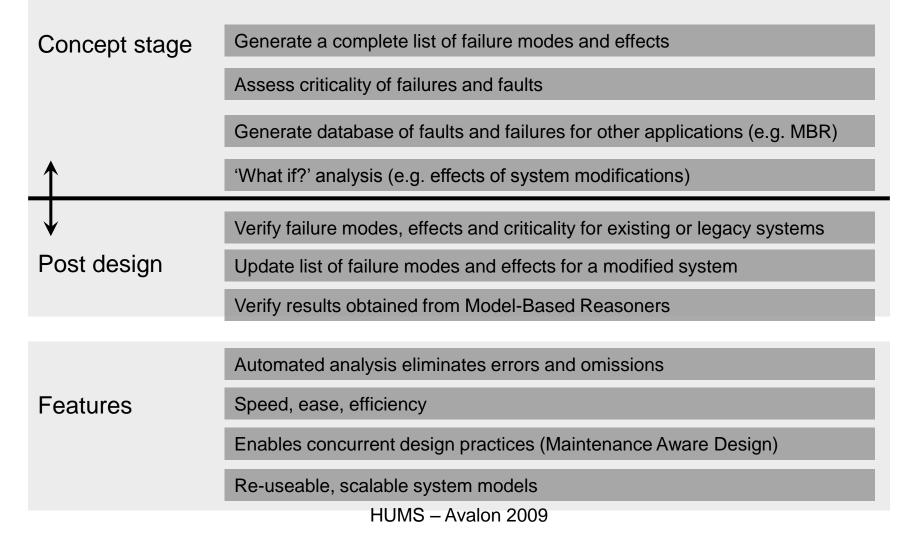
MADe Overview

HUMS - Avalon 2009

Customer Outcomes

Implementation of MADe to:

- 1. optimise system design (reliability)
- 2. reduce design costs & risks
- 3. reduce compliance costs (documentation)
- 4. standardise design process (concurrent)
- 5. improve condition / health monitoring capability
- 6. accelerate product development lifecycle
- 7. Quality Assurance for supply chain
- 8. reduce Life Cycle Costs


Summary – optimise design, reduce costs & risks

MADe - Business Case

- reduces time taken to create, update and maintain accurate failures database reduce design cost
- supply chain failures data is often redone, eliminates replication of effort – <u>reduce process cost</u>
- verification and validation of sensor set designs improves health monitoring – <u>increase reliability</u>
- improving system reliability during operations leads to reduction in total operating costs – <u>reduce life cycle</u> <u>costs (LCC)</u>

Module MADe Failure Database

PHM Technology

Module MADe Performance Assessment

Concept stage	Assess predicted performance of a PHM design against specifications
	Conduct 'what-if?' analysis for PHM capability vs. design trade-offs for weight, cost etc.
1	Identify additional PHM requirements for system design modifications
\checkmark	Verify the failure coverage of existing sensor set designs
Post design	Test diagnostic capability of other programs, e.g. Model-Based Reasoners
	Verify results obtained from Model-Based Reasoners
	On-screen, real-time analysis results facilitates decision making
Features	Automatically generate validation and support documentation
	Accommodate Built-In-Tests, evaluate virtual sensing capability
	FMECA based approach to failure coverage assessment

PHM Technology

HUMS – Avalon 2009

Module MADe Design Optimisation

Concept stage	Assessment of anticipated PHM requirements for system designs and design variations
1	Conceptual design of PHM system in terms of sensor types
↓ Post design	Optimisation of total number and location of sensors
	'What-if' analysis to determine impact of trade-offs (e.g.: weight, cost etc.) on PHM capability
	Ranking of potential sensor set designs in terms of total weight, cost etc.
Features	FMECA - based approach to sensor placement
	On-screen, real-time results for trade studies
	Automatic audit trail and documentation of PHM design iterations

PHM Technology

HUMS – Avalon 2009

Module MADe Diagnostic

Concept stage	Design diagnostic application for a system to detect and localise failures
1	Design prognostic application able to predict likelihood of failures
↓ Post design	Validate results from MBR and other diagnostic/prognostic tools
	Provide real-time, on-board FDI capabilities
Features	Ability to rapidly update application based on revised FMECA (system upgrades)
	'Bottom up' approach provides efficient software – smaller code and processing requirements